Bioengineering Seminar Series: Graduate Student Choice Speaker Elizabeth Loboa

Friday, November 7, 2014
9:00 a.m.
Pepco Room (1105), Jeong H. Kim Engineering Building
Professor Benjamin Shapiro
benshap@umd.edu

Elizabeth Loboa
* Fischell Dept. of Bioengineering Graduate Student Choice Speaker
Professor and Associate Chair
Joint Department of Biomedical Engineering
University of North Carolina-Chapel Hill and North Carolina State University

My Life in Tissue Engineering, Regenerative Medicine, and Wound Healing: Professional and Personal Adventures

There is growing clinical need in both wound healing and tissue engineering for controlled release systems that encapsulate drugs and/or growth factors and provide sustained release in a site-specific manner. Biocompatible, biodegradable nanofibrous scaffolds with their morphological similarities to the natural extracellular matrix (ECM) in vivo, high surface area to volume ratio, and small interfibrous pore sizes hold great potential for this application.
Loading dopants within an electrospun polymeric matrix allows for consistent entrapment throughout the nanofibers. Further, the high surface area to volume ratio of these matrices maximizes the interaction of the carrier with a surrounding medium. A critical parameter for achieving success in controlled release is controlled diffusion of molecules out of the electrospun scaffolds. The drug release characteristics of nanofibrous scaffolds rely on how well the drug is encapsulated inside the nanofibers. These characteristics are critically affected by fiber morphology.

In addition, successful tissue engineering and regenerative medicine approaches are critically affected by mechanical stimuli. Functional tissue engineering uses physical stimulation to direct cell populations to produce tissue with anatomically and physiologically correct structures and with material properties similar to native tissue. Adipose-derived stem cells (ASC) are a particularly promising cell source for functional tissue engineering applications due to their multilineage differentiation potential and their
abundance and ease of harvest relative to many other cell types. However, mechanobiological understanding of ASC is still emerging and many questions remain to be answered. Approaches and mechanisms associated with physical stimuli-induced ASC lineage specification and functional tissue formation comprise an increasingly active area of investigation.

In this presentation, Dr. Loboa will discuss approaches in her lab to elucidate and optimize biomimetic fibrous systems and mechanical stimuli for wound healing and regenerative medicine applications. Focus will be placed on regeneration of skin and musculoskeletal tissues and approaches to wound care and tissue regeneration while combating multi-drug resistant bacteria.

In a distinct twist from her typical presentations, Dr. Loboa will also share her personal and professional experiences as she has progressed forward in her academic life. From being the first external hire into a brand new department (and six months pregnant), having two beautiful children (pre-tenure), and multiple life changes since, she will take this opportunity to candidly talk with graduate students about any of her personal and professional experiences they would like to discuss as they plan their next steps on the
amazing journeys they will take.

remind we with google calendar

 

April 2024

SU MO TU WE TH FR SA
31 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 1 2 3 4
Submit an Event