

Vesicular Delivery of Interleukin-11 gene for osteoporosis treatment

Elizabeth Bentley, Corinne Farley, Matt Mulvaney, Maria Pozo, Eric Wang Faculty Advisor: Dr. Steven Jay, Fischell Department of Bioengineering, University of Maryland Clinical Mentor: Dr. Stephen Thom, Department of Emergency Medicine, University of Maryland Baltimore

Background

Osteoporosis

- Over 200M people with osteoporosis
- Decreased quality of life

Critical Pathway

- Wnt signaling promotes osteoblastogenesis
- Proteins Dkk1 and Dkk2 are Wnt inhibitors
- Interleukin-11 (IL-11) inhibits Dkk1 and Dkk2

Extracellular Vesicles as Drug Delivery System

- Bodies that bud off of cell membranes
- Self-origin mitigates immunogenicity
- Surfaces can be conjugated for targeting

IL-11

naturally

decreases

with age

Our Solution

- Engineer plasmid containing *IL-11* gene
- Load plasmid into extracellular vesicles (EVs)
- Introduce EVs to bone area to promote osteoblastogenesis

Methods

Adapted Transfection: Plasmid into EVs

Loading Quantification

- Lyse EVs
- Measure genetic content using Nanodrop spectrophotometer

Introduction to Human Embryonic Kidney Cells

• HEK293T incubated with model *GFP* plasmid-loaded EVs

Expression Quantification

• Microplate photometer measures expression of GFP

	Ethics
Cleavage Site	 Experimental Ethics Animal testing Isolation procedures: human subjects Application Ethics Other uses for osteoblastogenesis Athletics
	Conclusions
	 Transfecting GFP into EVs results in ~25.4% loading efficient Incubation with HEK293T cells produces GFP expression Method can be extended to IL-11 expression to treat osteop
	Impact and Future Work
	 Benefits of the Device Personalized medical treatment Non-invasive approach Platform can be modified for wide range of applications Future Work Design <i>IL-11</i> encoding plasmid Use of (AspSerSer)₆ to target bone-formation surfaces <i>In Vivo</i> animal models Downstream processing for purification Scale-up for high throughput production
;	Acknowledgements
ed ev.	This work was supported by the Capstone program in the F Department of Bioengineering at the University of Maryland. Men was provided by Dr. Steven Jay (University of Maryland, College Par Dr. Stephen Thom (University of Maryland, Baltimore). Lab space materials were provided by Dr. Jay's lab, and initial vesicle sample provided by Dr. Thom's lab.
)	References
	 Lamichhane, T. N.; Jay, S. M., Production of Extracellular Vesicles Loaded with Therapeutic Cargo. <i>Mol Biol</i> 2018, <i>1831</i>, 37-47. Rutkovskiy, A.; Stensløkken, KO.; Vaage, I. J., Osteoblast Differentiation at a Glance. <i>Medical Sci Monitor Basic Research</i> 2016, <i>22</i>, 95-106. Sozen, T.; Ozisik, L.; Basaran, N. C., An overview and management of osteoporosis. <i>Eur J Rheuma 4</i> (1), 46-56. Zhang, G., Guo, B., Wu, H., Tang, T., Zhang, B., Zheng, L., Qin, L. (2012). A delivery system tai bone formation surfaces to facilitate RNAi-based anabolic therapy. <i>Nature Medicine</i>, <i>18</i>(2), 307 doi:10.1038/nm.2617

